
© 2011 IBM Corporation

Out with the old,
in with the new

In with the old,
“bring on” the new

Robert W. Wisniewski

Chief Software Architect

Blue Gene Supercomputer Research

© 2011 IBM Corporation2

Obligatory Exascale Swim Lanes Slide

© 2011 IBM Corporation3

Outline
� Review of exascale codesign center projects and NNSA

– Considerable focus remains on traditional programming paradigms

� Challenge of introducing new models
– Applications want to know what new model is

– System software and hardware want to know what models applications could use

� Addressing new challenges while providing familiar models
– Communication

– Execution

– Reliability

� Two codesign messages
– Model: IP and SW API

– Application questions

� Conclusion

© 2011 IBM Corporation4

Codesign slide 1: Energy and Transportation

© 2011 IBM Corporation5

Codesign slide 2: Fundamental Science

© 2011 IBM Corporation6

Codesign slide 3: Nuclear Engineering

© 2011 IBM Corporation7

Codesign slide 4: Fusion

© 2011 IBM Corporation8

NNSA Meeting on From Petascale to Exascale

� NNSA’s meeting initiating public interaction on exascale

– Programming models: MPI and OpenMP

© 2011 IBM Corporation9

Bunny to egg “ You commit first” and egg to bunny
“ you commit first”

let us know what
the hardware and
programming model
will look like

let us know what
hardware and
programming model
you can adapt to use

© 2011 IBM Corporation

10

?

© 2011 IBM Corporation11

Goal

� Run Legacy Applications and Existing Models
while

Providing Applications with New Models and Latest Capabilities

� Three Primary Areas

– Communication and runtime

– Execution and system mechanisms

– Reliability

����

© 2011 IBM Corporation

Supporting Different Shared Memory/Threading Models on PAMI
Can Have Familiar Programming Models for Exascale

� Message Layer Core has C++ message classes and other utilities to
program different network devices

� Support many programming paradigms

Other
Paradigms*

SPI

Message Layer Core (C++)

pt2pt protocols

ARMCIMPICHConverse/Charm++

PAMI API (C)

Network Hardware (DMA, Collective Network, Global Interrupt Network)

Application

Global
Arrays

High-Level
API

collective protocols

Low-Level
API

UPC*

DMA Device Collective Device GI Device Shmem Device

© 2011 IBM Corporation

PAMI API

Supporting Different Shared Memory/Threading Models on PAMI
Can Have Familiar Programming Models for Exascale

MPICH2
2.x

BG/Q
messaging

implementation

PERCS
messaging

implementation

PAMI
ADI

Applications

BG/Q

MU SPI

PERCS

HAL API

IBM MPI
2.x

MPCI

x86
messaging

implementation

x86

APGAS Runtime

CAF*
Runtime

X10*
Runtime

UPC*
Runtime

GA
ARMCI*

CHARM++* GASNet*

M
id

dl
ew

ar
e

S
ys

te
m

 S
of

tw
ar

e

*all runtimes are not supported on all platforms

© 2011 IBM Corporation

Progression
of

Execution
Approaches

Application

15

High Perf API
Common API
Implementation

K42

Linux

Ap

LibraOS

Linux

Hypervisor

Ap

Ap
or

Kitten/CNK
Kitten

palacios

Linux

Ap

© 2011 IBM Corporation

Logical End of Progression is Each Service As Needed

16

Linux

Ap

exaOS

© 2011 IBM Corporation

Reliability and impact on users – higher up pyramid less user impact

� Amount of silicon will make reliability a more difficult challenge
� Multiple potential directions: work with the user community to determine

Direction 1) Push hardware and system software to guarantee correctness

Direction 2) Leave it to the users to deal with hardware faults

hardware

Libraries/Middleware (2-10x)

Users (2-10-100x +)

(1x)

•Key to scalability is to keep it
simple and predictable

•Keep reliability complexity away
from the user as that is where the real
cost is

•Use hardware/software to perform
local recovery at system level

(1x)
system

software

© 2011 IBM Corporation

18

?

© 2011 IBM Corporation

Communication model allowing MPI to be
combined with newer models such as UPC,
GA, Charm++, X10, Chapel, etc

Execution model allowing known efficient
LWK mechanisms while allowing generic
Linux calls

Reliability model that assumes a significant
role of the hardware and system software
not placing full burden on the application

19

© 2011 IBM Corporation

One Model How This Might Work

Codesign Centers, IESP, etc., code

F
ire

w
al

l

Generalized API

Code specific
to Platform 2

Auto – Generated Code*

Code specific
to Platform 1

PS APIPS API

21*idea from Chemistry Exascale Codesign Center – thanks to Robert Harrison

© 2011 IBM Corporation

Application Information Useful to Architectural Decisions
(Highlights)
� Bottleneck identification

– Important to identify the most crucial bottleneck to application, can not provide more of everything

� Computation
– How much of your application is amenable to running on cores that are largely computation

– How much of your application can not be parallelized, i.e., inherently serial

– How valuable is branch prediction, Out Of Order, etc.

– How many threads per MPI tasks: would you want, could you utilize

� Memory:
– How well can you predict memory access pattern

– How much memory does your node need: minimum requirements, threshold points

– How is the memory used, read only, how widely accessed, how much redundant state

– For a 1TF node what point does memory bandwidth become the bottleneck

– How sensitive is your application to NUMA

� Resilience
– How important is resilience to your application

– How much and what character of faults can be handled in the application

– How much are you willing to pay in performance for underlying hardware and system to handle resilience

� Communication and Synchronization
– What types are used with what frequency, e.g., allreduce, barrier, pt-to-pt

� I/O and storage
– What are the inherent challenges versus those caused by current implementation

� Control and resource management
– How would you utilize an exascale machine, job mix, capability versus capacity, etc.

© 2011 IBM Corporation

We will be able to bridge the gap between disparate
architectures by providing support for running legacy
applications while allowing new models to fully
leverage the hardware. This can be accomplished
with innovative evolution to existing communication,
execution, and reliability models.
(we should invest in, but not rely on, revolutionary approaches in targeted areas)

23

